网络渗透爬虫_分布式爬虫攻击网站

hacker|
264

如何构建一个分布式爬虫

爬虫本质上不需要分布式。因为你要爬一个网站通常5-10个线程足够了,再多就是对网站压力测试了。你只需要将任务分配到不同的机器上,然后各运行各自己的,结果合并一下就可以。这个与nutch人map,reduse也没有什么差别。只是手工分,手工合并。当然也可以用脚本分,脚本合并,脚本远程启动。有一个远程控制模块,似乎叫rpy。很简单,很容易上手。可以远程控制一个模块。数据库用postgresql不是很好。因为爬行结果放在关系型数据库里太吃力。特别是网页内容。通常是URL放在redis里。内容放在文件系统里,你可以用hadoop+hdfs+thrift方案放在hadoop里。如果使用了hadoop,就干脆模仿nutch的流程,把python脚本也交给hadoop去管理好了。至于控制与通信这个都让hadoop来处理好了。当然我个人觉着rpy方式更简单。里面控制与通信都是现成的。10分钟就学会了。还是回到原来的说法,大部分情况下,单机多线程跑爬虫足够用了。不需要分布式。而且效率甚至比分布式更高。

python分布式爬虫是什么意思

一、分布式爬虫架构

在了解分布式爬虫架构之前,首先回顾一下Scrapy的架构,如下图所示。

Scrapy单机爬虫中有一个本地爬取队列Queue,这个队列是利用deque模块实现的。如果新的Request生成就会放到队列里面,随后Request被Scheduler调度。之后,Request交给Downloader执行爬取,简单的调度架构如下图所示。

如果两个Scheduler同时从队列里面取Request,每个Scheduler都有其对应的Downloader,那么在带宽足够、正常爬取且不考虑队列存取压力的情况下,爬取效率会有什么变化?没错,爬取效率会翻倍。

这样,Scheduler可以扩展多个,Downloader也可以扩展多个。而爬取队列Queue必须始终为一个,也就是所谓的共享爬取队列。这样才能保证Scheduer从队列里调度某个Request之后,其他Scheduler不会重复调度此Request,就可以做到多个Schduler同步爬取。这就是分布式爬虫的基本雏形,简单调度架构如下图所示。

我们需要做的就是在多台主机上同时运行爬虫任务协同爬取,而协同爬取的前提就是共享爬取队列。这样各台主机就不需要各自维护爬取队列,而是从共享爬取队列存取Request。但是各台主机还是有各自的Scheduler和Downloader,所以调度和下载功能分别完成。如果不考虑队列存取性能消耗,爬取效率还是会成倍提高。

二、维护爬取队列

那么这个队列用什么来维护?首先需要考虑的就是性能问题。我们自然想到的是基于内存存储的Redis,它支持多种数据结构,例如列表(List)、集合(Set)、有序集合(Sorted Set)等,存取的操作也非常简单。

Redis支持的这几种数据结构存储各有优点。

列表有lpush()、lpop()、rpush()、rpop()方法,我们可以用它来实现先进先出式爬取队列,也可以实现先进后出栈式爬取队列。

集合的元素是无序的且不重复的,这样我们可以非常方便地实现随机排序且不重复的爬取队列。

有序集合带有分数表示,而Scrapy的Request也有优先级的控制,我们可以用它来实现带优先级调度的队列。

我们需要根据具体爬虫的需求来灵活选择不同的队列。

三、如何去重

Scrapy有自动去重,它的去重使用了Python中的集合。这个集合记录了Scrapy中每个Request的指纹,这个指纹实际上就是Request的散列值。我们可以看看Scrapy的源代码,如下所示:

import hashlib

def request_fingerprint(request, include_headers=None):

if include_headers:

include_headers = tuple(to_bytes(h.lower())

for h in sorted(include_headers))

cache = _fingerprint_cache.setdefault(request, {})

if include_headers not in cache:

fp = hashlib.sha1()

fp.update(to_bytes(request.method))

fp.update(to_bytes(canonicalize_url(request.url)))

fp.update(request.body or b'')

if include_headers:

for hdr in include_headers:

if hdr in request.headers:

fp.update(hdr)

for v in request.headers.getlist(hdr):

fp.update(v)

cache[include_headers] = fp.hexdigest()

return cache[include_headers]

request_fingerprint()就是计算Request指纹的方法,其方法内部使用的是hashlib的sha1()方法。计算的字段包括Request的Method、URL、Body、Headers这几部分内容,这里只要有一点不同,那么计算的结果就不同。计算得到的结果是加密后的字符串,也就是指纹。每个Request都有独有的指纹,指纹就是一个字符串,判定字符串是否重复比判定Request对象是否重复容易得多,所以指纹可以作为判定Request是否重复的依据。

那么我们如何判定重复呢?Scrapy是这样实现的,如下所示:

def __init__(self):

self.fingerprints = set()

def request_seen(self, request):

fp = self.request_fingerprint(request)

if fp in self.fingerprints:

return True

self.fingerprints.add(fp)

在去重的类RFPDupeFilter中,有一个request_seen()方法,这个方法有一个参数request,它的作用就是检测该Request对象是否重复。这个方法调用request_fingerprint()获取该Request的指纹,检测这个指纹是否存在于fingerprints变量中,而fingerprints是一个集合,集合的元素都是不重复的。如果指纹存在,那么就返回True,说明该Request是重复的,否则这个指纹加入到集合中。如果下次还有相同的Request传递过来,指纹也是相同的,那么这时指纹就已经存在于集合中,Request对象就会直接判定为重复。这样去重的目的就实现了。

Scrapy的去重过程就是,利用集合元素的不重复特性来实现Request的去重。

对于分布式爬虫来说,我们肯定不能再用每个爬虫各自的集合来去重了。因为这样还是每个主机单独维护自己的集合,不能做到共享。多台主机如果生成了相同的Request,只能各自去重,各个主机之间就无法做到去重了。

那么要实现去重,这个指纹集合也需要是共享的,Redis正好有集合的存储数据结构,我们可以利用Redis的集合作为指纹集合,那么这样去重集合也是利用Redis共享的。每台主机新生成Request之后,把该Request的指纹与集合比对,如果指纹已经存在,说明该Request是重复的,否则将Request的指纹加入到这个集合中即可。利用同样的原理不同的存储结构我们也实现了分布式Reqeust的去重。

四、防止中断

在Scrapy中,爬虫运行时的Request队列放在内存中。爬虫运行中断后,这个队列的空间就被释放,此队列就被销毁了。所以一旦爬虫运行中断,爬虫再次运行就相当于全新的爬取过程。

要做到中断后继续爬取,我们可以将队列中的Request保存起来,下次爬取直接读取保存数据即可获取上次爬取的队列。我们在Scrapy中指定一个爬取队列的存储路径即可,这个路径使用JOB_DIR变量来标识,我们可以用如下命令来实现:

scrapy crawl spider -s JOB_DIR=crawls/spider

更加详细的使用方法可以参见官方文档,链接为:。

在Scrapy中,我们实际是把爬取队列保存到本地,第二次爬取直接读取并恢复队列即可。那么在分布式架构中我们还用担心这个问题吗?不需要。因为爬取队列本身就是用数据库保存的,如果爬虫中断了,数据库中的Request依然是存在的,下次启动就会接着上次中断的地方继续爬取。

所以,当Redis的队列为空时,爬虫会重新爬取;当Redis的队列不为空时,爬虫便会接着上次中断之处继续爬取。

五、架构实现

我们接下来就需要在程序中实现这个架构了。首先实现一个共享的爬取队列,还要实现去重的功能。另外,重写一个Scheduer的实现,使之可以从共享的爬取队列存取Request。

幸运的是,已经有人实现了这些逻辑和架构,并发布成叫Scrapy-Redis的Python包。接下来,我们看看Scrapy-Redis的源码实现,以及它的详细工作原理

Python爬虫如何避免爬取网站访问过于频繁

一. 关于爬虫

爬虫,是一种按照一定的规则自动地抓取互联网信息的程序。本质是利用程序获取对我们有利的数据。

反爬虫,从不是将爬虫完全杜绝;而是想办法将爬虫的访问量限制在一个可接纳的范围,不要让它过于频繁。

二. 提高爬虫效率的方法

协程。采用协程,让多个爬虫一起工作,可以大幅度提高效率。

多进程。使用CPU的多个核,使用几个核就能提高几倍。

多线程。将任务分成多个,并发(交替)的执行。

分布式爬虫。让多个设备去跑同一个项目,效率也能大幅提升。

打包技术。可以将python文件打包成可执行的exe文件,让其在后台执行即可。

其他。比如,使用网速好的网络等等。

三. 反爬虫的措施

限制请求头,即request header。解决方法:我们可以填写user-agent声明自己的身份,有时还要去填写origin和referer声明请求的来源。

限制登录,即不登录就不能访问。解决方法:我们可以使用cookies和session的知识去模拟登录。

复杂的交互,比如设置“验证码”来阻拦登录。这就比较难做,解决方法1:我们用Selenium去手动输入验证码;方法2:我们用一些图像处理的库自动识别验证码(tesserocr/pytesserart/pillow)。

ip限制。如果这个IP地址,爬取网站频次太高,那么服务器就会暂时封掉来自这个IP地址的请求。 解决方法:使用time.sleep()来对爬虫的速度进行限制,建立IP代理池或者使用IPIDEA避免IP被封禁。

0条大神的评论

发表评论